Toward Efficient and Fully Scalable Sputtered NiOx‐Based Inverted Perovskite Solar Modules via Co‐Ordinated Modification Strategies

Author:

Tutundzic Merve123ORCID,Zhang Xin23456ORCID,Lammar Stijn234ORCID,Singh Shivam7,Marchezi Paulo7ORCID,Merckx Tamara123,Aguirre Aranzazu123,Moons Ellen7,Aernouts Tom123,Kuang Yinghuan123ORCID,Vermang Bart123

Affiliation:

1. Imo‐Imomec Hasselt University Martelarenlaan 42 3500 Hasselt Belgium

2. Imo‐Imomec Imec, Thin Film PV Technology – Partner in Solliance Thor Park 8320 3600 Genk Belgium

3. Imo‐Imomec EnergyVille Thor Park 8320 3600 Genk Belgium

4. ESAT KU Leuven 3001 Heverlee Belgium

5. Center for Micro Nano Systems School of Information Science and Technology (SIST) Fudan University 200433 Shanghai P. R. China

6. Academy for Engineering & Technology (FAET) Fudan University 200433 Shanghai P. R. China

7. Department of Engineering and Physics Karlstad University SE‐651 88 Karlstad Sweden

Abstract

Sputtered nickel oxide (NiOx) has become one of the most promising inorganic hole transport layers for p–i–n perovskite solar cells (PSCs) due to its appealing features such as its robust nature, low material cost, and easy integration to tandem structures and large‐area applications. However, the main drawback with NiOx‐based PSCs is typically low open‐circuit voltage (VOC) due to the inferior energy‐level alignment, low charge mobility, and high recombination at the interface. Herein, two types of phosphonic acid self‐assembled monolayers (SAMs) deposited by blade coating as an interfacial layer to modulate the sputtered NiOx/perovskite interface properties are used. While sputtered NiOx serves as a conformally coated hole selective layer, the ultrathin SAM interlayer facilitates the hole extraction and minimizes the energy loss at the interface. Co‐ordinately introduced stabilizing additive, namely octadecyl 3‐(3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)propionate (I‐76), further improves the device performance of NiOx/SAM‐based PSCs, resulting in VOC of 1.14 V and a power conversion efficiency of 21.8%. By applying these strategies for perovskite module upscaling, aperture area module efficiencies of 19.7%, 17.5%, and 15.5% for perovskite minimodules of 4, 16, and 100 cm2 are demonstrated, corresponding to active area module efficiencies of 20.4%, 18.0%, and 16.4%, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3