Affiliation:
1. Ming Hsieh Department of Electrical and Computer Engineering University of Southern California Los Angeles CA 90089 USA
2. Mork Family Department of Chemical Engineering & Materials Science University of Southern California Los Angeles CA 90089 USA
3. Air Force Research Laboratory Information Directorate Rome NY 13441 USA
Abstract
AbstractMemristive devices are promising candidates for analog computing applications such as neuromorphic computation. Larger dynamic ranges and more sufficient multilevel states can enable the significant development of memristor‐based utilizations. Herein, a method to improve the analog switching performance of memristors through a hybrid tuning (coarse and fine tuning) of two sub‐filaments is demonstrated. The creation of sub‐filaments inside the dielectric switching layer is realized by deploying Pt metal islands in the switching layer. Given the different material stack configurations of the two sub‐filaments, they exhibit different switching properties to play the roles of coarse and fine tuning respectively in the memristor. Based on the above mechanism, a Pt/Ta/Al2O3/Pt island/Al2O3‐x/TiOy/Al2O3‐x/Pt memristor is proposed and fabricated. Through the hybrid tuning of two sub‐filaments, a combined dynamic range of 600 Ω to 50 kΩ is achieved. Compared to the reference Pt/Ta/Al2O3/Pt memristors (dynamic range: 600 Ω to 8 kΩ), both dynamic range and multilevel resistance states are increased significantly. Meanwhile, the energy efficiency is improved because the resistance of tunable states can be set to larger values. Furthermore, this mechanism can be incorporated into various existing memristors to improve their dynamic range and multilevel states, which extensively enriches the applications of memristors.
Funder
Intelligence Advanced Research Projects Activity
Rome Laboratory
Subject
Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献