Ultrafast Hybrid Computing Systems Enabled by Memristor‐Based Quadratic Programming Circuits

Author:

Liu Zerui1,Cheng Hsiang‐Chun1,Hossain Sushmit1,Meng Deming1,Bena Ryan2,Shi Yudi1,Chen Buyun1,Yang Daniel W.1,Su Shiyu3,Wang Yunxiang1,Hu Pan1,Palaria Mayank1,Yang Hao1,Zhang Qiaochu4,Song Boxiang5,Ou Tse‐Hsien1,Ye Jiacheng1,Hiramony Nishat Tasnim1,Zhang Hongming1,Hsu Ting‐Hao1,Tang Zhexiang1,Cai Zhi6,Barnell Mark7,Wu Qing7,Yang Ce1,Cronin Stephen1,Nguyen Quan2,Chen Mike Shuo‐Wei1,Wu Wei1ORCID

Affiliation:

1. Ming Hsieh Department of Electrical Engineering University of Southern California Los Angeles CA 90089 USA

2. Aerospace and Mechanical Engineering and Computer Science University of Southern California Los Angeles CA 90089 USA

3. Electrical and Computer Engineering Department University of Waterloo ON N2L3G1 Canada

4. Electrical and Computer Engineering Department University of Virginia Charlottesville VA 22903 USA

5. Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan Hubei 430074 China

6. Mork Family Department of Chemical Engineering and Materials Science University of Southern California Los Angeles CA 90089 USA

7. Air Force Research Laboratory Information Directorate Rome NY 13441 USA

Abstract

AbstractImplementing algorithms purely on digital computing platforms dramatically halts the performance of conventional computing systems. Revolutionary computing systems with extreme energy efficiency and high accuracy are demanded to handle the growing computing tasks. Here, the research on hybrid analog–digital computing platforms enabled by memristor‐based optimization solvers for achieving ultrafast computations is presented. By utilizing tunable memristors as parameters to solve linear programming (LP) and quadratic programming (QP) problems, a real‐time control algorithm for micro air vehicles (MAVs) and a support vector machine (SVM) algorithm for cancer diagnosis are implemented. These experiments demonstrate over 2000x speed‐up compared to conventional digital platforms, with negligible energy consumption, using a memristor‐based system consisting of six memristors. These findings underscore the vast potential of memristor‐based optimization solvers not only in hybrid analog–digital computing platforms but also as a transformative solution for a wide range of modern computing challenges. This approach promises significant advancements in energy efficiency and ultrafast speed, positioning it as a leading contender for next‐generation computing paradigms.

Funder

Office of the Director of National Intelligence

Intelligence Advanced Research Projects Activity

Publisher

Wiley

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3