Optimizing the Pd Sites in Pure Metallic Aerogels for Efficient Electrocatalytic H2O2 Production

Author:

Zhang Xin1,Wang Cui2,Chen Kai3,Clark Adam H.4ORCID,Hübner René5ORCID,Zhan Jinhua1ORCID,Zhang Liang3ORCID,Eychmüller Alexander2ORCID,Cai Bin1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China

2. Physical Chemistry Technische Universität Dresden 01069 Dresden Germany

3. Center for Combustion Energy School of Vehicle and Mobility State Key Laboratory of Automotive Safety and Energy Tsinghua University Beijing 100084 China

4. Laboratory for Synchrotron Radiation and Femtochemistry Paul Scherrer Institute Villigen 5232 Switzerland

5. Helmholtz‐Zentrum Dresden‐Rossendorf Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany

Abstract

Decentralized electrochemical production of hydrogen peroxide (H2O2) is an attractive alternative to the industrial anthraquinone process, the application of which is hindered by the lack of high‐performance electrocatalysts in acidic media. Herein, a novel catalyst design strategy is reported to optimize the Pd sites in pure metallic aerogels by tuning their geometric environments and electronic structures. By increasing the Hg content in the Pd–Hg aerogels, the PdPd coordination is gradually diminished, resulting in isolated, single‐atom‐like Pd motifs in the Pd2Hg5 aerogel. Further heterometal doping leads to a series of M–Pd2Hg5 aerogels with an unalterable geometric environment, allowing for sole investigation of the electronic effects. Combining theoretical and experimental analyses, a volcano relationship is obtained for the M–Pd2Hg5 aerogels, demonstrating an effective tunability of the electronic structure of the Pd active sites. The optimized Au–Pd2Hg5 aerogel exhibits an outstanding H2O2 selectivity of 92.8% as well as transferred electron numbers of ≈2.1 in the potential range of 0.0–0.4 VRHE. This work opens a door for designing metallic aerogel electrocatalysts for H2O2 production and highlights the importance of electronic effects in tuning electrocatalytic performances.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3