Topology Control of Covalent Organic Frameworks with Interlaced Unsaturated 2D and Saturated 3D Units for Boosting Electrocatalytic Hydrogen Peroxide Production

Author:

Wu Han1,Li Lili1,Chen Hongni1,Xing Yali1,Wang Zhong12,Zhang Chuanhui1,Long Xiaojing1ORCID

Affiliation:

1. State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering Qingdao University Qingdao 266071 P. R. China

2. Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China

Abstract

AbstractModulating the electronic state of multicomponent covalent organic framework (COF) electrocatalysts is crucial for enhancing catalytic activity. However, the effect of dimensionality on their physicochemical functionalities is still lacking. Herein, we report an interlaced unsaturated 2D and saturated 3D strategy to develop multicomponent‐regulated COFs with tunable gradient dimensionality for high selectivity and activity electrocatalysis. Compared with the two‐component 2D and 3D model COFs, the 2D/3D framework interlaced COFs with locally irregular dimensions and electronic structures are more practical in optimizing the intrinsic electrode surface reaction and mass transfer. Remarkably, the unsaturated 2D‐inserted 3D TAE‐COF regulates the adsorption mode of OOH* species to supply a favorable dynamic pathway for the H2O2 process, thereby achieving an excellent production rate of 8.50 mol gcat−1 h−1. Moreover, utilizing theoretical calculation and in situ ATR‐FTIR experiment, we found that the central carbon atom of the tetraphenyl‐based unit (site‐1 and site‐6) are potential active sites. This strategy of operating the adsorption ability of reactants with dimensionality‐interconnected building blocks provides an idea for designing durable and efficient electrocatalysts.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3