Atomic Confinement Empowered CoZn Dual‐Single‐Atom Nanotubes for H2O2 Production in Sequential Dual‐Cathode Electro‐Fenton Process

Author:

Yang Lijun12ORCID,Cheng Huimin1,Li Hui3,Sun Ga1,Liu Sitong1,Ma Tianyi3ORCID,Zhang Lei1ORCID

Affiliation:

1. College of Chemistry Liaoning University Shenyang 110036 China

2. Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province Institute of Clean Energy Chemistry Liaoning University Shenyang 110036 China

3. School of Science Stem College Rmit University Melbourne VIC 3000 Australia

Abstract

AbstractSingle‐atom catalysts (SACs) are flourishing in various fields because of their 100% atomic utilization. However, their uncontrollable selectivity, poor stability and vulnerable inactivation remain critical challenges. According to theoretical predictions and experiments, a heteronuclear CoZn dual‐single‐atom confined in N/O‐doped hollow carbon nanotube reactors (CoZnSA@CNTs) is synthesized via spatial confinement growth. CoZnSA@CNTs exhibit superior performance for H2O2 electrosynthesis over the entire pH range due to dual‐confinement of atomic sites and O2 molecule. CoZnSA@CNTs is favorable for H2O2 production mainly because the synergy of adjacent atomic sites, defect‐rich feature and nanotube reactor promoted O2 enrichment and enhanced H2O2 reactivity/selectivity. The H2O2 selectivity reaches ∼100% in a range of 0.2–0.65 V versus RHE and the yield achieves 7.50 M gcat−1 with CoZnSA@CNTs/carbon fiber felt, exceeding most of the reported SACs in H‐type cells. The obtained H2O2 is converted directly to sodium percarbonate and sodium perborate in a safe way for H2O2 storage/transportation. The sequential dual‐cathode electron‐Fenton process promotes the formation of reactive oxygen species (•OH, 1O2 and •O2) by activating the generated H2O2, enabling accelerated degradation of various pollutants and Cr(VI) detoxification in actual wastewater. This work proposes a promising confinement strategy for catalyst design and selectivity regulation of complex reactions.

Funder

National Natural Science Foundation of China

Cooperative Research Centres, Australian Government Department of Industry

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3