Bioinspired Flexible Hydrogelation with Programmable Properties for Tactile Sensing

Author:

Wang Yunxiao123,Geng Qiang123,Lyu Hao4,Sun Wuxuepeng5,Fan Xinyuan123,Ma Kang123,Wu Kai5,Wang Jinhe5,Wang Yancheng13,Mei Deqing1,Guo Chengchen467,Xiu Peng5,Pan Dingyi5,Tao Kai123ORCID

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310058 China

2. Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional Materials ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China

3. Joint Laboratory of Bio‐Organic Dielectrics Hangzhou 310058 China

4. School of Engineering Westlake University Hangzhou Zhejiang 310030 China

5. Department of Engineering Mechanics Zhejiang University Hangzhou 310027 China

6. Research Center for Industries of the Future Westlake University Hangzhou Zhejiang 310030 China

7. Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang 310024 China

Abstract

AbstractTactile sensing requires integrated detection platforms with distributed and highly sensitive haptic sensing capabilities along with biocompatibility, aiming to replicate the physiological functions of the human skin and empower industrial robotic and prosthetic wearers to detect tactile information. In this regard, short peptide‐based self‐assembled hydrogels show promising potential to act as bioinspired supramolecular substrates for developing tactile sensors showing biocompatibility and biodegradability. However, the intrinsic difficulty to modulate the mechanical properties severely restricts their extensive employment. Herein, by controlling the self‐assembly of 9‐fluorenylmethoxycarbonyl‐modifid diphenylalanine (Fmoc‐FF) through introduction of polyethylene glycol diacrylate (PEGDA), wider nanoribbons are achieved by untwisting from well‐established thinner nanofibers, and the mechanical properties of the supramolecular hydrogels can be enhanced 10‐fold, supplying bioinspired supramolecular encapsulating substrate for tactile sensing. Furthermore, by doping with poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and 9‐fluorenylmethoxycarbonyl‐modifid 3,4‐dihydroxy‐l‐phenylalanine (Fmoc‐DOPA), the Fmoc‐FF self‐assembled hydrogels can be engineered to be conductive and adhesive, providing bioinspired sensing units and adhesive layer for tactile sensing applications. Therefore, the integration of these modules results in peptide hydrogelation‐based tactile sensors, showing high sensitivity and sustainable responses with intrinsic biocompatibility and biodegradability. The findings establish the feasibility of developing programmable peptide self‐assembly with adjustable features for tactile sensing applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3