Ultrathin Nitride Ferroic Memory with Large ON/OFF Ratios for Analog In‐Memory Computing

Author:

Wang Ding1ORCID,Wang Ping1ORCID,Mondal Shubham1,Hu Mingtao1,Wu Yuanpeng1,Ma Tao2,Mi Zetian1

Affiliation:

1. Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109 USA

2. Michigan Center for Materials Characterization (MC) 2 University of Michigan Ann Arbor MI 48109 USA

Abstract

AbstractComputing in the analog regime using nonlinear ferroelectric resistive memory arrays can potentially alleviate the energy constraints and complexity/footprint challenges imposed by digital von Neumann systems. Yet the current ferroelectric resistive memories suffer from either low ON/OFF ratios/imprint or limited compatibility with mainstream semiconductors. Here, for the first time, ferroelectric and analog resistive switching in an epitaxial nitride heterojunction comprising ultrathin (≈5 nm) nitride ferroelectrics, i.e., ScAlN, with potentiality to bridge the gap between performance and compatibility is demonstrated. High ON/OFF ratios (up to 105), high uniformity, good retention, (<20% variation after > 105 s) and cycling endurance (>104) are simultaneously demonstrated in a metal/oxide/nitride ferroelectric junction. It is further demonstrated that the memristor can provide programmability to enable multistate operation and linear analogue computing as well as image processing with high accuracy. Neural network simulations based on the weight update characteristics of the nitride memory yielded an image recognition accuracy of 92.9% (baseline 96.2%) on the images from Modified National Institute of Standards and Technology. The non‐volatile multi‐level programmability and analog computing capability provide first‐hand and landmark evidence for constructing advanced memory/computing architectures based on emerging nitride ferroelectrics, and promote homo and hybrid integrated functional edge devices beyond silicon.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3