IGZO/WO3−x‐Heterostructured Artificial Optoelectronic Synaptic Devices Mimicking Image Segmentation and Motion Capture

Author:

Wu Tong1,Gao Song1,Li Yang12ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Network Based Intelligent Computing School of Information Science and Engineering University of Jinan Jinan 250022 China

2. School of Microelectronics Shandong University Jinan 250101 China

Abstract

AbstractCurrently, artificial neural networks (ANNs) based on memristors are limited to recognizing static images of objects when simulating human visual system, preventing them from performing high‐dimensional information perception, and achieving more complex biomimetic functions is subject to certain limitations. In this work, indium gallium zinc oxide (IGZO)/tungsten oxide (WO3−x)‐heterostructured artificial optoelectronic synaptic devices mimicking image segmentation and motion capture exhibiting high‐performance optoelectronic synaptic responses are proposed and demonstrated. Upon electrical and optical stimulations, the device shows a variety of fundamental and advanced electrical and optical synaptic plasticity. Most importantly, outstanding and repeatable linear synaptic weight changes are attained by the developed memristor. By taking advantage of the notable linear synaptic weight changes, ANNs have been constructed and successfully utilized to demonstrate two applications in the field of computer vision, including image segmentation and object tracking. The accuracy attained by the memristor‐based ANNs is similar to that of the computer algorithms, while its power has been significantly reduced by 105 orders of magnitude. With successful emulations of the human brain reactions when observing objects, the demonstrated memristor and related ANNs can be effectively utilized in constructing artificial optoelectronic synaptic devices and show promising potential in emulating human visual perception.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3