Self‐Rectifying Memristors for Three‐Dimensional In‐Memory Computing

Author:

Ren Sheng‐Guang1,Dong A‐Wei1,Yang Ling1,Xue Yi‐Bai1,Li Jian‐Cong1,Yu Yin‐Jie1,Zhou Hou‐Ji1,Zuo Wen‐Bin1,Li Yi12ORCID,Cheng Wei‐Ming12,Miao Xiang‐Shui12ORCID

Affiliation:

1. School of Integrated Circuits Hubei Key Laboratory of Advanced Memories Huazhong University of Science and Technology Wuhan 430074 China

2. Hubei Yangtze Memory Laboratories Wuhan 430205 China

Abstract

AbstractCostly data movement in terms of time and energy in traditional von Neumann systems is exacerbated by emerging information technologies related to artificial intelligence. In‐memory computing (IMC) architecture aims to address this problem. Although the IMC hardware prototype represented by a memristor is developed rapidly and performs well, the sneak path issue is a critical and unavoidable challenge prevalent in large‐scale and high‐density crossbar arrays, particularly in three‐dimensional (3D) integration. As a perfect solution to the sneak‐path issue, a self‐rectifying memristor (SRM) is proposed for 3D integration because of its superior integration density. To date, SRMs have performed well in terms of power consumption (aJ level) and scalability (>102 Mbit). Moreover, SRM‐configured 3D integration is considered an ideal hardware platform for 3D IMC. This review focuses on the progress in SRMs and their applications in 3D memory, IMC, neuromorphic computing, and hardware security. The advantages, disadvantages, and optimization strategies of SRMs in diverse application scenarios are illustrated. Challenges posed by physical mechanisms, fabrication processes, and peripheral circuits, as well as potential solutions at the device and system levels, are also discussed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3