Two Functions from a Single Photoresist: Tuning Microstructure Degradability from Light‐Stabilized Dynamic Materials

Author:

Gauci Steven C.12ORCID,Ehrmann Katharina12ORCID,Gernhardt Marvin12ORCID,Tuten Bryan12,Blasco Eva3ORCID,Frisch Hendrik12ORCID,Jayalatharachchi Vishakya12,Blinco James P.12,Houck Hannes A.4,Barner‐Kowollik Christopher125ORCID

Affiliation:

1. School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia

2. Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia

3. Institute for Molecular Systems Engineering and Advanced Materials Heidelberg University 69120 Heidelberg Germany

4. Department of Chemistry and Institute of Advanced Study University of Warwick Library Road Coventry CV4 7AL UK

5. Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

Abstract

AbstractA photoresist—based on a light‐stabilized dynamic material driven by an out‐of‐equilibrium photo‐Diels–Alder reaction of triazolinediones with naphthalenes—whose ability to intrinsically degrade postprinting can be tuned by a simple adjustment of laser intensity during 3D laser lithography is introduced. The resist's ability to form stable networks under green light irradiation that degrade in the dark is transformed into a tunable degradable 3D printing material platform. In‐depth characterization of the printed microstructures via atomic force microscopy before and during degradation reveals the high dependency of the final structures’ properties on the writing parameters. Upon identifying the ideal writing parameters and their effect on the network structure, it is possible to selectively toggle between stable and fully degradable structures. This simplifies the direct laser writing manufacturing process of multifunctional materials significantly, which typically requires the use of separate resists and consecutive writing efforts to achieve degradable and nondegradable material sections.

Funder

Australian Research Council

Queensland University of Technology

Deutsche Forschungsgemeinschaft

Carl-Zeiss-Stiftung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3