On‐Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines

Author:

Landers Fabian C.1ORCID,Gantenbein Valentin1ORCID,Hertle Lukas1,Veciana Andrea1,Llacer‐Wintle Joaquin1,Chen Xiang‐Zhong23,Ye Hao1,Franco Carlos1,Puigmartí‐Luis Josep45,Kim Minsoo1,Nelson Bradley J.1,Pané Salvador1ORCID

Affiliation:

1. Multi‐Scale Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland

2. Institute of Optoelectronics Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Fudan University Shanghai 200438 P. R. China

3. Yiwu Research Institute of Fudan University Yiwu Zhejiang 322000 P. R. China

4. Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional University of Barcelona Martí i Franquès 1 Barcelona 08028 Spain

5. Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 Barcelona 08010 Spain

Abstract

AbstractMagnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high‐frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Agencia Estatal de Investigación

Eidgenössische Technische Hochschule Zürich

Horizon 2020 Framework Programme

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3