A Naturally Inspired Extrusion‐Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices

Author:

Hertle Lukas1,Sevim Semih1ORCID,Zhu Jiawei1,Pustovalov Vitaly1,Veciana Andrea1,Llacer‐Wintle Joaquin1,Landers Fabian C.1,Ye Hao1,Chen Xiang‐Zhong123,Vogler Hannes4,Grossniklaus Ueli4ORCID,Puigmartí‐Luis Josep56,Nelson Bradley J.1ORCID,Pané Salvador1ORCID

Affiliation:

1. Multi‐Scale Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland

2. Institute of Optoelectronics State Key Laboratory of Photovoltaic Science and Technology Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Fudan University Shanghai 200433 P. R. China

3. Yiwu Research Institute of Fudan University Yiwu Zhejiang 322000 China

4. Department of Plant and Microbial Biology & Zurich‐Basel Plant Science Center University of Zurich Zollikerstrasse 107 Zurich 8008 Switzerland

5. Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional University of Barcelona Martí i Franquès, 1 Barcelona 08028 Spain

6. Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 Barcelona 08010 Spain

Abstract

AbstractSoft materials play a crucial role in small‐scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small‐scale soft devices. In this study, microfluidics is leveraged to precisely control reaction‐diffusion (RD) processes to generate multifunctional and compartmentalized calcium‐cross‐linkable alginate‐based microfibers. Under RD conditions, sophisticated alginate‐based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross‐linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll‐up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small‐scale devices.

Funder

ETH Risk Center

Generalitat de Catalunya

HORIZON EUROPE Framework Programme

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3