Magnetically Guided Microcatheter for Targeted Injection of Magnetic Particle Swarms

Author:

Torlakcik Harun1,Sevim Semih1ORCID,Alves Pedro23,Mattmann Michael1,Llacer‐Wintle Joaquim1,Pinto Maria4,Moreira Rosa4,Flouris Andreas D.5,Landers Fabian C.1,Chen Xiang‐Zhong67,Puigmartí‐Luis Josep89,Boehler Quentin1,Mayor Tiago Sotto23,Kim Minsoo1,Nelson Bradley J.1,Pané Salvador1ORCID

Affiliation:

1. Multi‐Scale Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland

2. Transport Phenomena Research Centre (CEFT) Engineering Faculty Porto University Porto 4200 Portugal

3. Associate Laboratory in Chemical Engineering (ALICE) Engineering Faculty Porto University Porto 4200 Portugal

4. Experian LDA Porto 4200 Portugal

5. FAME Laboratory Department of Exercise Science University of Thessaly Trikala, Karies 42100 Greece

6. Institute of Optoelectronics State Key Laboratory of Photovoltaic Science and Technology Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Fudan University Shanghai 200433 P. R. China

7. Yiwu Research Institute of Fudan University Yiwu 322000 P. R. China

8. Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional University of Barcelona Martí i Franquès, 1 Barcelona 08028 Spain

9. Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 Barcelona 08010 Spain

Abstract

AbstractThe initial delivery of small‐scale magnetic devices such as microrobots is a key, but often overlooked, aspect for their use in clinical applications. The deployment of these devices within the dynamic environment of the human body presents significant challenges due to their dispersion caused by circulatory flows. Here, a method is introduced to effectively deliver a swarm of magnetic nanoparticles in fluidic flows. This approach integrates a magnetically navigated robotic microcatheter equipped with a reservoir for storing the magnetic nanoparticles. The microfluidic flow within the reservoir facilitates the injection of magnetic nanoparticles into the fluid stream, and a magnetic field gradient guides the swarm through the oscillatory flow to a target site. The microcatheter and reservoir are engineered to enable magnetic steering and injection of the magnetic nanoparticles. To demonstrate this approach, experiments are conducted utilizing a spinal cord phantom simulating intrathecal catheter delivery for applications in the central nervous system. These results demonstrate that the proposed microcatheter successfully concentrates nanoparticles near the desired location through the precise manipulation of magnetic field gradients, offering a promising solution for the controlled deployment of untethered magnetic micro‐/nanodevices within the complex physiological circulatory systems of the human body.

Funder

European Research Council

Eidgenössische Technische Hochschule Zürich

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 Future and Emerging Technologies

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3