Microfluidic‐Assembled Covalent Organic Frameworks@Ti3C2Tx MXene Vertical Fibers for High‐Performance Electrochemical Supercapacitors

Author:

Zhu Xiaolin12,Zhang Yang12,Man Zengming12,Lu Wangyang12,Chen Wei12,Xu Jianhong3,Bao Ningzhong4,Chen Wenxing12,Wu Guan12ORCID

Affiliation:

1. National Engineering Lab for Textile Fiber Materials and Processing Technology Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

2. Zhejiang Provincial Innovation Center of Advanced Textile Technology Zhejiang Sci‐Tech University Shaoxing 312000 P. R. China

3. The State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China

4. State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China

Abstract

AbstractThe delicate design of innovative and sophisticated fibers with vertical porous skeleton and eminent electrochemical activity to generate directional ionic pathways and good faradic charge accessibility is pivotal but challenging for realizing high‐performance fiber‐shaped supercapacitors (FSCs). Here, hierarchically ordered hybrid fiber combined vertical‐aligned and conductive Ti3C2Tx MXene (VA‐Ti3C2Tx) with interstratified electroactive covalent organic frameworks LZU1 (COF‐LZU1) by one‐step microfluidic synthesis is developed. Due to the incorporation of vertical channels, abundant redox active sites and large accessible surface area throughout the electrode, the VA‐Ti3C2Tx@COF‐LZU1 fibers express exceptional gravimetric capacitance of 787 F g−1 in a three‐electrode system. Additionally, the solid‐state asymmetric FSCs deliver a prominent energy density of 27 Wh kg−1, capacitance of 398 F g−1 and cycling life of 20 000 cycles. The key to high energy storage ability originates from the decreased ions adsorption energy and ameliorative charge density distribution in vertically aligned and active hybrid fiber, accelerating ions transportation/accommodation and interfacial electrons transfer. Benefiting from excellent electrochemical performance, the FSCs offer sufficient energy supply to power watches, flags, and digital display tubes as well as be integrated with sensors to detect pulse signals, which opens a promising route for architecting advanced fiber toward the carbon neutrality market beyond energy‐storage technology.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3