Hierarchically Porous and Hetero‐Structured Black Phosphorus/Ti3C2TX MXene Aerogel Fiber for Wearable Supercapacitors with Implantable Capability

Author:

Tang Qingqing12,Zhang Yang12,Zhu Xiaolin12,Wang Yuting12,Man Zengming12,Yang Chao12,Xu Jianhong3,Wu Guan12ORCID,Lu Wangyang12

Affiliation:

1. National Engineering Lab for Textile Fiber Materials & Processing Technology Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

2. Zhejiang Provincial Innovation Center of Advanced Textile Technology Shaoxing 312000 P. R. China

3. The State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractArchitected fibrous electrodes with hierarchically porous, stable interface coupling, and good biocompatibility that accelerates charge transfer and storage are vital to realize high‐performance fiber‐shaped supercapacitors (FSCs) toward wearable and implantable systems. Here, a hierarchically porous and hetero‐structured black phosphorus/Ti3C2TX MXene aerogel (A‐BP/Ti3C2TX) fiber based on electrostatic self‐assembly and microfluidic spinning methods is reported. The as‐prepared A‐BP/Ti3C2TX fiber with interconnected porous networks, high conductive skeleton, and substantial interfacial building exhibits a low diffusion energy barrier of H+, the large adsorption energy of H+, fast interfacial electron conduction, and excellent structural stability by density functional theory calculations and in situ/ex situ characteristics. As a result, the A‐BP/Ti3C2TX fiber presents boosted electrolyte ion diffusion kinetic and capacitance of 369 F g−1. Furthermore, the asymmetric FSCs deliver good energy density of 6.39 Wh kg−1 and long cycling stability of 20 000 cycles, thereby successfully powering wearable devices. More importantly, by combining the hydrogel adhesion agent, the implantable FSCs that can firmly adhere to the tissues show significant bending stability (88.52% capacitance retention after 5000 cycles), impressively adhesive capability in tissue fluid or wetted tissue surface, and considerably no cell toxic. The work offers a broad path for designing structural fiber electrodes for implantable energy technology and wearable applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3