Self‐Exfoliating Benzotristriazine Macrocyclic Network: A New 2D Material for High‐Performance Electrochemical Energy Storage

Author:

Vijayakumar Samyyappan12ORCID,Mohanachandran Anjana P.1ORCID,Rakhi Raghavan B.12ORCID,Shankar Sreejith12ORCID,Pillai Renjith S.3ORCID,Ajayaghosh Ayyappanpillai124ORCID

Affiliation:

1. CSIR – National Institute of Interdisciplinary Science and Technology (CSIR‐NIIST) Thiruvananthapuram Kerala 695019 India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

3. Analytical and Spectroscopy Division, Vikram Sarabhai Space Centre Indian Space Research Organization Thiruvananthapuram 695022 India

4. Department of Chemistry SRM Institute of Science and Technology Kattankulathur Chennai 603203 India

Abstract

AbstractAza‐fused aromatic π–conjugated networks are an important class of 2D graphitic analogs, which are generally constructed using aromatic precursors. Herein, the study describes a new synthetic approach and electrochemical properties of a self‐exfoliating benzotristriazine 2D network (BTTN) constructed using aliphatic precursors, under relatively mild conditions. The obtained BTTN exhibits a nanodisc‐like morphology, the self‐exfoliation tendency of which is ascribed to the presence of structurally different macrocycles with high electronic repulsion between the layers. The benzotristriazine repeat units of BTTN is electroactive and holds higher carbon/nitrogen ratio when compared with the conventional graphitic aza‐fused π‐conjugated networks. The self‐exfoliated BTTN nanodiscs show excellent electrochemical energy storage of 485 and 333 F g−1 at 1 A g−1 in three‐electrode and two‐electrode measurements, respectively. BTTN in a symmetric coin‐cell architecture exhibits a high specific energy value of 46 Wh kg−1 at a power density of 1 kW kg−1 and shows excellent cyclic stability of 96% for 10 000 and 90% for 30 000 charge–discharge cycles at a higher current density of 5 A g−1, surpassing the device performance of most of the reported all‐organic pseudocapacitive 2D networks.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3