Size‐Induced Ferroelectricity in Antiferroelectric Oxide Membranes

Author:

Xu Ruijuan123ORCID,Crust Kevin J.24,Harbola Varun24,Arras Rémi5,Patel Kinnary Y.6,Prosandeev Sergey6,Cao Hui7,Shao Yu‐Tsun89,Behera Piush10,Caretta Lucas1011,Kim Woo Jin12,Khandelwal Aarushi12,Acharya Megha1012,Wang Melody M.13,Liu Yin3,Barnard Edward S.14,Raja Archana14,Martin Lane W.1012,Gu X. Wendy15,Zhou Hua16,Ramesh Ramamoorthy17,Muller David A.8,Bellaiche Laurent6,Hwang Harold Y.12

Affiliation:

1. Department of Applied Physics Stanford University Stanford CA 94305 USA

2. Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

3. Department of Materials Science and Engineering North Carolina State University Raleigh NC 27606 USA

4. Department of Physics Stanford University Stanford CA 94305 USA

5. CEMES Université de Toulouse CNRS UPS, 29 rue Jeanne Marvig F‐31055 Toulouse France

6. Physics Department and Institute for Nanoscience and Engineering University of Arkansas Fayetteville AR 72701 USA

7. Materials Science Division Argonne National Laboratory Lemont IL 60439 USA

8. Department of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA

9. Mork Family Department of Chemical Engineering and Materials Science University of Southern California Los Angeles CA 90089 USA

10. Department of Materials Science and Engineering University of California Berkeley Berkeley CA 94720 USA

11. School of Engineering Brown University Providence RI 02912 USA

12. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

13. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

14. The Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA

15. Department of Mechanical Engineering Stanford University Stanford CA 94305 USA

16. X‐ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

17. Department of Materials Science and Nanoengineering Department of Physics and Astronomy Rice University Houston TX 77251 USA

Abstract

AbstractDespite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high‐energy‐density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead‐free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric‐to‐ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single‐phase below 40 nm, as well as a mixed‐phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First‐principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size‐driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead‐free oxides with the membrane platform.

Funder

National Science Foundation

Air Force Office of Scientific Research

Army Research Office

North Carolina State University

Ford Foundation

U.S. Department of Energy

Office of Naval Research

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3