Coexistence of ferroelectric and ferrielectric phases in ultrathin antiferroelectric PbZrO3 thin films

Author:

Liu YingORCID,Niu Ranming,Uriach Roger,Pesquera David,Roque José Manuel Caicedo,Santiso José,Cairney Julie M.,Liao Xiaozhou,Arbiol Jordi,Catalan GustauORCID

Abstract

Whereas ferroelectricity may vanish in ultra-thin ferroelectric films, it is expected to emerge in ultra-thin antiferroelectric films, sparking people’s interest in using antiferroelectric materials as an alternative to ferroelectric ones for high-density data storage applications. Lead Zirconate (PbZrO3, PZO) is considered the prototype material for antiferroelectricity, and indeed, previous studies indicated that nanoscale PZO films exhibit ferroelectricity. The understanding of such phenomena from the microstructure aspect is crucial but still lacking. In this study, we fabricated a PZO film with thicknesses varying from 5 to 80 nm. Using Piezoresponse Force Microscopy, we discovered that the film displayed a transition from antiferroelectric behavior in the thicker areas to ferroelectric behavior in the thinner ones, with a critical thickness between 10 and 15 nm. In this critical thickness range, a 12 nm PZO thin film was chosen for further study using aberration-corrected scanning transmission electron microscopy. The investigation showed that the film comprises both ferroelectric and ferrielectric phases. The ferroelectric phase is characterized by polarization along the [011]pc projection direction. The positions of Pb, Zr, and O were determined using the integrated differential phase contrast method. This allowed us to ascertain that the ferroelectric PZO unit cell is half the size of that in the antiferroelectric phase on the ab plane. The observed unit cell is different from the electric field-induced ferroelectric rhombohedral phases. Additionally, we identified a ferrielectric phase with a unique up-up-zero-zero (↑↑··) dipole configuration. The finding is crucial for understanding the performance of ultrathin antiferroelectric thin films and the subsequent design and development of antiferroelectric devices.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3