Orthorhombic Polar Phase in Sodium Niobate Nanoribbons

Author:

Canabarro Beatriz Rodrigues1ORCID,Calderon Sebastian2ORCID,Letichevsky Sonia3ORCID,Jardim Paula Mendes1ORCID,Ferreira Paulo456

Affiliation:

1. Program of Metallurgical and Materials Engineering‐ COPPE/Federal University of Rio de Janeiro Rio de Janeiro 68505 Brazil

2. Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh PA 15213 USA

3. Chemical and Materials Engineering Department Pontifícia Universidade Católica do Rio de Janeiro Rio de Janeiro 38097 Brazil

4. International Iberian Nanotechnology Laboratory (INL) Braga 4715‐330 Portugal

5. Department of Mechanical Engineering and IDMEC Instituto Superior Técnico University of Lisbon Lisbon 1049‐001 Portugal

6. Materials Science and Engineering Program – University of Texas Austin TX 78712 USA

Abstract

AbstractFerroelectric materials exhibit switchable spontaneous polarization below Curie's temperature, driven by octahedral distortions and rotations, as well as ionic displacements. The ability to manipulate polarization coupled with persistent remanence, drives diverse applications, including piezoelectric devices. In the last two decades, nanoscale exploration has unveiled unique material properties influenced by morphology, including the capability to manipulate polarization, patterns, and domains. This paper focuses on the characterization of nanometric sodium niobate (SN) synthesized from metallic niobium through alkali hydrothermal treatment, utilizing electron microscopy techniques, including high‐resolution differential phase contrast (DPC) in scanning transmission electron microscopy (STEM). The material exhibits a nanoribbon structure forming a tree root‐like network. The study identifies crystallographic phase, atomic columns displacement directions, and surface features, such as exposed planes and the absence of particular atomic columns. The high sensitivity of integrated DPC images proves crucial in overcoming observational challenges in other STEM modes. These observations are essential for potential applications in electronic, photocatalytic, and chemical reaction contexts.

Funder

Fundação para a Ciência e a Tecnologia

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3