Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures

Author:

Mkhitaryan Vahagn1ORCID,Weber Andrew P.12ORCID,Abdullah Saad1ORCID,Fernández Laura3ORCID,Abd El‐Fattah Zakaria M.4ORCID,Piquero‐Zulaica Ignacio3ORCID,Agarwal Hitesh1ORCID,García Díez Kevin3ORCID,Schiller Frederik3ORCID,Ortega J. Enrique235ORCID,García de Abajo F. Javier16ORCID

Affiliation:

1. ICFO‐Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology 08860 Castelldefels Barcelona Spain

2. Donostia International Physics Center Paseo Manuel Lardizabal 4 20018 Donostia‐San Sebastián Spain

3. Centro de Física de Materiales CSIC‐UPV/EHU and Materials Physics Center 20018 San Sebastián Spain

4. Physics Department, Faculty of Science Al‐Azhar University Nasr City E‐11884 Cairo Egypt

5. Departamento de Física Aplicada I Universidad del País Vasco 20018 San Sebastián Spain

6. ICREA‐Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 08010 Barcelona Spain

Abstract

AbstractThe ability to confine light down to atomic scales is critical for the development of applications in optoelectronics and optical sensing as well as for the exploration of nanoscale quantum phenomena. Plasmons in metallic nanostructures with just a few atomic layers in thickness can achieve this type of confinement, although fabrication imperfections down to the subnanometer scale hinder actual developments. Here, narrow plasmons are demonstrated in atomically thin crystalline silver nanostructures fabricated by prepatterning silicon substrates and epitaxially depositing silver films of just a few atomic layers in thickness. Specifically, a silicon wafer is lithographically patterned to introduce on‐demand lateral shapes, chemically process the sample to obtain an atomically flat silicon surface, and epitaxially deposit silver to obtain ultrathin crystalline metal films with the designated morphologies. Structures fabricated by following this procedure allow for an unprecedented control over optical field confinement in the near‐infrared spectral region, which is here illustrated by the observation of fundamental and higher‐order plasmons featuring extreme spatial confinement and high‐quality factors that reflect the crystallinity of the metal. The present study constitutes a substantial improvement in the degree of spatial confinement and quality factor that should facilitate the design and exploitation of atomic‐scale nanoplasmonic devices for optoelectronics, sensing, and quantum‐physics applications.

Funder

H2020 European Research Council

Ministerio de Ciencia e Innovación

Generalitat de Catalunya

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3