Abstract
AbstractNanotechnology enables in principle a precise mapping from design to device but relied so far on human intuition and simple optimizations. In nanophotonics, a central question is how to make devices in which the light-matter interaction strength is limited only by materials and nanofabrication. Here, we integrate measured fabrication constraints into topology optimization, aiming for the strongest possible light-matter interaction in a compact silicon membrane, demonstrating an unprecedented photonic nanocavity with a mode volume of V ~ 3 × 10−4 λ3, quality factor Q ~ 1100, and footprint 4 λ2 for telecom photons with a λ ~ 1550 nm wavelength. We fabricate the cavity, which confines photons inside 8 nm silicon bridges with ultra-high aspect ratios of 30 and use near-field optical measurements to perform the first experimental demonstration of photon confinement to a single hotspot well below the diffraction limit in dielectrics. Our framework intertwines topology optimization with fabrication and thereby initiates a new paradigm of high-performance additive and subtractive manufacturing.
Funder
Villum Fonden
Innovationsfonden
Danmarks Grundforskningsfond
Det Frie Forskningsråd
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献