The Onset of Lasing in Semiconductor Nanolasers

Author:

Saldutti Marco12ORCID,Yu Yi12ORCID,Mørk Jesper12

Affiliation:

1. DTU Electro Technical University of Denmark Lyngby DK‐2800 Kgs. Denmark

2. NanoPhoton ‐ Center for Nanophotonics Technical University of Denmark Lyngby DK‐2800 Kgs. Denmark

Abstract

AbstractNanolasers based on emerging dielectric cavities with deep sub‐wavelength confinement of light offer a large light‐matter coupling rate and near‐unity spontaneous emission factor, . These features call for reconsidering the standard approach to identifying the lasing threshold. Here, a new threshold definition is suggested, taking into account the recycling process of photons when is large. This threshold reduces to the classical balance between gain and loss in the limit of macroscopic lasers, but qualitative as well as quantitative differences emerge for nanolasers. In particular, this new threshold identifies the onset of a transition regime, where the quantum statistics of the emitted light evolve into the Poissonian statistics of a coherent state. It is shown that the threshold with photon recycling consistently marks the onset of the change in the second‐order intensity correlation, , toward coherent laser light, irrespective of the laser size and down to the case of a single emitter. In contrast, other threshold definitions may well predict lasing in light‐emitting diodes. An overview of different threshold definitions proposed in the literature is provided and their predictions are compared when going from macroscopic to microscopic lasers.

Funder

HORIZON EUROPE European Research Council

Danmarks Grundforskningsfond

Villum Fonden

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3