Atomically Dispersed Manganese on Carbon Substrate for Aqueous and Aprotic CO2 Electrochemical Reduction

Author:

Wang Meiling1,Yao Ying12ORCID,Tian Yuhui3,Yuan Yifei4ORCID,Wang Liguang5,Yang Feiyang1,Ren Jingjie1,Hu Xinrong1,Wu Feng12,Zhang Shanqing3,Wu Junxiu5,Lu Jun5ORCID

Affiliation:

1. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China

2. Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China

3. College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China

4. Centre for Clean Environment and Energy School of Environment and Science Griffith University Gold Coast Campus Gold Coast QLD 4222 Australia

5. College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China

Abstract

AbstractCO2 utilization and conversion are of great importance in alleviating the rising CO2 concentration in the atmosphere. Here, a single‐atom catalyst (SAC) is reported for electrochemical CO2 utilization in both aqueous and aprotic electrolytes. Specifically, atomically dispersed Mn–N4 sites are embedded in bowl‐like mesoporous carbon particles with the functionalization of epoxy groups in the second coordination spheres. Theoretical calculations suggest that the epoxy groups near the Mn–N4 site adjust the electronic structure of the catalyst with reduced reaction energy barriers for the electrocatalytic reduction of CO2 to CO. The resultant Mn‐single‐atom carbon with N and O doped catalyst (MCs‐(N,O)) exhibits extraordinary electrocatalytic performance with a high CO faradaic efficiency of 94.5%, a high CO current density of 13.7 mA cm−2, and a low overpotential of 0.44 V in the aqueous environment. Meanwhile, as a cathode catalyst for aprotic Li–CO2 batteries, the MCs‐(N,O) with well‐regulated active sites and unique mesoporous bowl‐like morphology optimizes the nucleation behavior of discharge products. MCs‐(N,O)‐based batteries deliver a low overpotential and excellent cyclic stability of 1000 h. The findings in this work provide a new avenue to design and fabricate SACs for various electrochemical CO2 utilization systems.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3