Regulating the Water Dissociation on Atomic Iron Sites to Speed Up CO2 Protonation and Achieve pH‐Universal CO2 Electroreduction

Author:

Tang Qi12,Hao Qi3,Wu Junxiu4ORCID,Zhang Yaowen5,Sun Ping6,Wang Depeng12,Tian Chuan7,Zhong Haixia12,Zhu Yihan6,Huang Keke5,Liu Kai3,Zhang Xinbo12,Lu Jun4ORCID

Affiliation:

1. Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China

3. School of Engineering Westlake University Hangzhou Zhejiang 310030 China

4. College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310027 China

5. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 China

6. Center for Electron Microscopy State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China

7. Jilin Normal University Key Laboratory of Preparation and Applications of Environmental Friendly Materials Ministry of Education Changchun Jilin 130103 China

Abstract

AbstractAtomic Fe sites enabled electrochemical carbon dioxide (CO2) reduction (ECO2R) to carbon monoxide (CO) at low overpotentials. However, the narrow potential ranges for selective CO2 conversion on atomic Fe sites hindered the CO production at high current densities. Therefore, unveiling the CO2 electroreduction processes and clarifying the catalytic mechanisms on different atomic Fe sites are important for better design of atomic Fe catalysts toward efficient ECO2R. Herein, the ECO2R processes on single‐atom, dual‐atom, and cluster Fe sites are systematically investigated, and clarify that the balanced water dissociation and CO2 protonation on dual‐atom Fe sites promote the efficient CO production. The dual‐atom Fe catalyst achieves Faradaic efficiencies of CO (FECO) above 92% over a wide potential range of −0.4–−0.9 V versus reversible hydrogen electrode and maintains FECO of 91% after 153‐h electrolysis in H‐type cell. Benefitting from the favorable CO2 protonation for ECO2R on dual‐atom Fe sites, pH‐universal CO2 electroreduction is achieved in alkali‐/acid‐/bicarbonate‐fed membrane electrode assembly electrolyzer, with FECO exceeds 98% in strongly acidic/alkaline and neutral mediums. The work reveals a water dissociation‐promoted CO2 electroreduction on dual‐atom Fe sites and presents a feasible regulation of atomic Fe sites for highly active/selective ECO2R.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3