Stable 2e/2CO2 Electrochemistry Triggered by Enriched Interfacial Oxygen Mo2N@Ti3C2O2 Elcetrocatalyst for High Rates and High Energy Efficiency Li‐CO2 Batteries

Author:

Zheng Ruixin1,Yang Mengmeng1,Zhu Xiaoqi2,Fang Qisheng2,Wang Xilin1,Lei Pengyang1,Zhou Jingwen13,Wang Bin2,Cheng Jianli1ORCID

Affiliation:

1. Institute of Chemical Materials China Academy of Engineering Physics Mianshan road Mianyang 621900 China

2. Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu 611731 China

3. Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 China

Abstract

AbstractRechargeable lithium‐carbon dioxide (Li‐CO2) batteries present a compelling strategy for carbon capture and utilization techniques. Nevertheless, the formation of Li2CO3 as the main discharge product in the 4e/3CO2 electrochemistry of Li‐CO2 batteries necessitates an elevated applied voltage to achieve full decomposition, which leads to severe performance issues in Li‐CO2 batteries. In this work, a stable lithium oxalate (Li2C2O4) electrochemistry involving a 2e/2CO2 process triggered by Mo2N@Ti3C2O2 electrocatalyst is proposed, which facilitates highly reversible redox reactions in Li‐CO2 batteries. The presence of enriched ‐O terminations at the interface between Mo2N and Ti3C2O2 strengthens charge redistribution of Mo 3d orbital electron and enhances the coupling between Mo 3d orbitals and O 2p orbitals in Li2C2O4. The adsorption energy of Li2C2O4 on Mo2N@Ti3C2O2 surface and energy barrier for self‐disproportionation reaction of Li2C2O4 are further increased, enabling the stable Li2C2O4 electrochemistry. Therefore, the Mo2N@Ti3C2O2 based Li‐CO2 battery can produce Li2C2O4 discharge products even at a high discharge rate of 500 mA g−1 (ten times to previous studies) and during deep cycling processes. Due to the stable Li2C2O4 electrochemistry, Li‐CO2 batteries exhibit excellent electrochemical performance, including ultra‐low overpotential (0.55 V), ultra‐high energy efficiency (82.9%), and excellent cycling stability electrode (800 h).

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3