Achieving Clearance of Drug‐Resistant Bacterial Infection and Rapid Cutaneous Wound Regeneration Using an ROS‐Balancing‐Engineered Heterojunction

Author:

Geng Chong1,He Shuai1,Yu Sheng2,Johnson Hannah M.2,Shi Hongxing1,Chen Yanbai1,Chan Yau Kei3,He Wenxuan1,Qin Miao4,Li Xiao5,Deng Yi167ORCID

Affiliation:

1. Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology West China Hospital, School of Chemical Engineering, Sichuan University Chengdu 610041 China

2. Department of Chemistry Washington State University Pullman WA 99164 USA

3. Department of Ophthalmology The University of Hong Kong Hong Kong 999077 China

4. Department of Biomedical Engineering Taiyuan University of Technology Taiyuan 030024 China

5. Department of Gastroenterology West China Hospital Sichuan University Chengdu 610041 China

6. State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

7. Department of Mechanical Engineering The University of Hong Kong Hong Kong 999077 China

Abstract

AbstractIntractable infected microenvironments caused by drug‐resistant bacteria stalls the normal course of wound healing. Sono‐piezodynamic therapy (SPT) is harnessed to combat pathogenic bacteria, but the superabundant reactive oxygen species (ROS) generated during SPT inevitably provoke severe inflammatory response, hindering tissue regeneration. Consequently, an intelligent nanocatalytic membrane composed of poly(lactic‐co‐glycolic acid) (PLGA) and black phosphorus /V2C MXene bio‐heterojunctions (2D2‐bioHJs) is devised. Under ultrasonication, 2D2‐bioHJs effectively eliminate drug‐resistant bacteria by disrupting metabolism and electron transport chain (ETC). When ultrasonication ceases, they enable the elimination of SPT‐generated ROS. The 2D2‐bioHJs act as a “lever” that effectively achieves a balance between ROS generation and annihilation, delivering both antibacterial and anti‐inflammatory properties to the engineered membrane. More importantly, in vivo assays corroborate that the nanocatalytic membranes transform the stalled chronic wound environment into a regenerative one by eradicating the bacterial population, dampening the NF‐κB inflammatory pathway and promoting angiogenesis. As envisaged, this work demonstrates a novel tactic to arm membranes with programmed antibacterial and anti‐inflammatory effects to remedy refractory infected wounds from drug‐fast bacteria.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3