Development of Microneedles for Antimicrobial Drug Delivery: A Comprehensive Review on Applications in Wound Infection Management

Author:

Haidari Hanif1ORCID,Bright Richard2ORCID,Yu Yunlong3,Vasilev Krasimir2ORCID,Kopecki Zlatko1ORCID

Affiliation:

1. Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia

2. College of Medicine and Public Health Flinders University Bedford Park SA 5042 Australia

3. Institute of Burn Research, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing 400038 P. R. China

Abstract

Microneedles (MNs) have emerged as a promising transdermal antimicrobial delivery system, providing precise and localized drug delivery while complemented with noninvasiveness and patient compliance. Currently, the topical application of antimicrobials restricts the delivery of drugs to the critical areas of the wound bed, largely due to barriers posed by the necrotic tissue, scab formation, and bacterial biofilms, which severely diminish the bioavailability of the therapeutics. MNs have enabled efficient and targeted delivery to overcome many chronic wound challenges. Over the past decade, significant progress has been made to develop MNs with unique properties tailored for the delivery of vaccines, anticancer, and antimicrobials. As ongoing research continues to refine MN design, material properties, and drug formulations, the potential for revolutionizing antimicrobial drug delivery for efficacy, patient experience, and therapeutic outcomes remains at the forefront of scientific research. In this review, insights are provided into the latest progress, current developments, and the diverse applications of MNs for antimicrobial drug delivery. Herein, the translational potential of MNs is highlighted and a perspective on the current challenges associated with clinical translation is provided. Furthermore, this review aids in identifying research gaps while empowering and contributing to the future implementation of cutting‐edge delivery systems to effectively tackle antimicrobial resistance.

Funder

Channel 7 Children's Research Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3