KHCO3 Chemical‐Activated Hydrothermal Porous Carbon Derived from Sugarcane bagasse for Supercapacitor Applications

Author:

Wang Liujie12,Ma Xueji3,Ma Zhihua12,Li Pengfa12,Zhang Laiping12ORCID

Affiliation:

1. School of Chemistry & Materials Engineering Xinxiang University Xinxiang 453003 China

2. Henan Photoelectrocatalytic Material and Micro-Nano Application Technology Academician Workstation Xinxiang 450003 China

3. School of Pharmacy Xinxiang University Xinxiang 453003 China

Abstract

AbstractThe reuse of waste biomass resources had become a hot topic in the sustainable development of human society. Biomass was an ideal precursor for preparing porous carbon. However, due to the complexity of biomass composition and microstructure, the quality reproducibility of biomass porous carbon was poor. Therefore, it was of great significance to develop a reliable method for preparing porous carbon from biomass. In this paper, the activated hydrothermal porous carbon was prepared by a combination of hydrothermal carbonization treatment and KHCO3 mild activation. The hydrothermal carbonization treatment could complete the morphology adjustment and iron doping of the carbon in one step, and the mild activation of KHCO3 could activate the porous carbon while maintaining the spherical morphology. Fe‐modified porous carbon with carbon ball/nanosheet structure prepared from bagasse exhibited a high surface area (2169.8 m2/g), which facilitated ion/electrolyte diffusion and increased accessibility between surface area and electrolyte ions. Therefore, bagasse derived activated porous carbon had good specific capacitance (315.2 F/g at 1 A/g) and good cycle stability, with a capacitance loss of only 5.8 % after 5000 charge‐discharge cycles, and the Na2SO4‐based device showed the maximum energy density of 13.02 Wh/kg. This study showed that the combination of hydrothermal treatment and mild activation provided an effective way for the conversion of waste biomass into high‐performance electrode materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3