Bridging Synthesis and Controllable Doping of Monolayer 4 in. Length Transition‐Metal Dichalcogenides Single Crystals with High Electron Mobility

Author:

Li Hui1,Yang Junbo1,Li Xiaohui1,Luo Quankun2,Cheng Mo1,Feng Wang1,Du Ruofan1,Wang Yuzhu1,Song Luying1,Wen Xia1,Wen Yao3,Xiao Mengmeng4,Liao Lei5,Zhang Yanfeng6,Shi Jianping1ORCID,He Jun3

Affiliation:

1. The Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China

2. Hunan Institute of Advanced Sensing and Information Technology Xiangtan University Xiangtan 411105 P. R. China

3. Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 P. R. China

4. Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon‐based Electronics School of Electronics Peking University Beijing 100871 P. R. China

5. School of Physics and Electronics Hunan University Changsha 410082 P. R. China

6. School of Materials Science and Engineering Peking University Beijing 100871 P. R. China

Abstract

AbstractEpitaxial growth and controllable doping of wafer‐scale atomically thin semiconductor single crystals are two central tasks to tackle the scaling challenge of transistors. Despite considerable efforts are devoted, addressing such crucial issues simultaneously under 2D confinement is yet to be realized. Here, an ingenious strategy to synthesize record‐breaking 4 in. length Fe‐doped transition‐metal dichalcogenides (TMDCs) single crystals on industry‐compatible c‐plane sapphire without special miscut angle is designed. Atomically thin transistors with high electron mobility (≈146 cm2 V−1 s−1) and remarkable on/off current ratio (≈109) are fabricated based on 4 in. length Fe‐MoS2 single crystals, due to the ultralow contact resistance (≈489 Ω µm). In‐depth characterizations and theoretical calculations reveal that the introduction of Fe significantly decreases the formation energy of parallel steps on sapphire surfaces and contributes to the edge‐nucleation of unidirectional alignment TMDCs domains (>99%). This work represents a substantial leap in terms of bridging synthesis and doping of wafer‐scale 2D semiconductor single crystals, which should promote the further device downscaling and extension of Moore's law.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3