A review of solar and solar‐assisted drying of fresh produce: state of the art, drying kinetics, and product qualities

Author:

Boateng Isaac Duah123ORCID

Affiliation:

1. Division of Food, Nutrition and Exercise Sciences University of Missouri Columbia MO USA

2. Kumasi Cheshire Home Kumasi Ashanti Region Ghana

3. Organization of African Academic Doctors Nairobi Kenya

Abstract

AbstractGlobal demand exists for high‐quality fresh produce. Nevertheless, the quality of fresh produce is severely impacted by its perishability due to its high moisture content. Therefore, fresh produces are preserved using artificial dryers (hot‐air dryers, catalytic infrared dryers, etc.) driven by electricity or natural fuels. Nonetheless, the exorbitant cost of power has heightened the need for sustainable resources, notably solar energy, for drying. Hence, this article is a review of how solar dryers and solar‐assisted dryers have affected the drying kinetics and quality of fresh produce in the last 5 years. The review showed that solar drying modeling technology (thin‐layer modeling, computational fluid dynamics, adaptive‐network‐based fuzzy interference system, artificial neural network) helps examine fresh produce drying characteristics using various simulation tools before developing any procedure. Solar‐assisted drying shortens drying times and increases drying rates. Besides, the quality of the dried fresh produce (color, aroma, appearance, rehydration, etc.) should always be considered. Hybrid solar drying produces higher drying rates and product quality than other solar dryers. However, energy analysis needs to be done as several studies have recognized energy efficiency and product quality. In addition, fresh produce must be pre‐treated before solar drying to maintain the final product quality. Therefore, future studies should focus on creating other pretreatment techniques to produce the needed chemical and physical changes and enhance mass and heat transfer. Finally, the influence of solar drying on the final products' nutrient retention or loss, functionalities, or sensory characteristics needs further investigation and comparison to other non‐solar drying technologies. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3