Spatial predictions of tree density and tree height across Mexico forests using ensemble learning and forest inventory data

Author:

Barreras Aylin12ORCID,Alanís de la Rosa José Armando3,Mayorga Rafael3,Cuenca Rubi3,Moreno‐G César3,Godínez Carlos3,Delgado Carina3,Soriano‐Luna Maria de los Ángeles34,George Stephanie3,Aldrete‐Leal Metzli Ileana3ORCID,Medina Sandra3,Romero Johny3,Villela Sergio3,Lister Andrew4,Sheridan Rachel4,Flores Rafael4,Crowther Thomas W.5,Guevara Mario267

Affiliation:

1. Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado USA

2. Centro de Geociencias Universidad Nacional Autónoma de México Juriquilla Mexico

3. Comisión Nacional Forestal (CONAFOR) Zapopan Mexico

4. US Forest Service, International Programs Washington District of Columbia USA

5. Institute of Integrative Biology ETH Zurich Zürich Switzerland

6. Department of Environmental Sciences University of California Riverside California USA

7. U.S. Salinity Laboratory, Agricultural Research Service United States Department of Agriculture Riverside California USA

Abstract

AbstractThe National Forestry Commission of Mexico continuously monitors forest structure within the country's continental territory by the implementation of the National Forest and Soils Inventory (INFyS). Due to the challenges involved in collecting data exclusively from field surveys, there are spatial information gaps for important forest attributes. This can produce bias or increase uncertainty when generating estimates required to support forest management decisions. Our objective is to predict the spatial distribution of tree height and tree density in all Mexican forests. We performed wall‐to‐wall spatial predictions of both attributes in 1‐km grids, using ensemble machine learning across each forest type in Mexico. Predictor variables include remote sensing imagery and other geospatial data (e.g., mean precipitation, surface temperature, canopy cover). Training data is from the 2009 to 2014 cycle (n > 26,000 sampling plots). Spatial cross validation suggested that the model had a better performance when predicting tree height r2 = .35 [.12, .51] (mean [min, max]) than for tree density r2 = .23 [.05, .42]. The best predictive performance when mapping tree height was for broadleaf and coniferous‐broadleaf forests (model explained ~50% of variance). The best predictive performance when mapping tree density was for tropical forest (model explained ~40% of variance). Although most forests had relatively low uncertainty for tree height predictions, e.g., values <60%, arid and semiarid ecosystems had high uncertainty, e.g., values >80%. Uncertainty values for tree density predictions were >80% in most forests. The applied open science approach we present is easily replicable and scalable, thus it is helpful to assist in the decision‐making and future of the National Forest and Soils Inventory. This work highlights the need for analytical tools that help us exploit the full potential of the Mexican forest inventory datasets.

Funder

International Programs, US Forest Service

United States Agency for International Development

University of Namibia

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference59 articles.

1. Barreras A. Alanís De La Rosa J. A. Cuenca Lara R. A. Moreno García C. Godínez Valdivia C. I. Delgado Caballero C. E. Soriano Luna M. D. L. Á. George S. P. Aldrete Leal M. I. Medina Casillas S. L. Romero Correa J. Villela Gaytán S. A. &Guevara M.(2022).National Forest and Soils Inventory of Mexico 2009‐2014[Data set]. Environmental Data Initiative.https://doi.org/10.6073/PASTA/4620375AEA631AB6A09CB573C7BF8AFF

2. Barreras A. &Guevara M.(2022).Nationwide geospatial dataset of environmental covariates at 1km resolution in Mexico[Data set]. Zenodo.https://doi.org/10.5281/zenodo.7130164

3. Brenning A.(2012).Spatial cross‐validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest(pp. 5372–5375). 2012 IEEE International Geoscience and Remote Sensing Symposium.https://doi.org/10.1109/IGARSS.2012.6352393

4. The openair manual–open‐source tools for analysing air pollution data;Carslaw D. C.;Manual for Version,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3