CO2 capture by benzene‐based hypercrosslinked polymer adsorbent: Artificial neural network and response surface methodology

Author:

Moradi Mohammad Reza1,Ramezanipour Penchah Hamid1,Ghaemi Ahad1

Affiliation:

1. School of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology Tehran Iran

Abstract

AbstractIn this research, porous benzene‐based hypercrosslinked polymeric adsorbents with different morphological properties were synthesized through Friedel–Crafts alkylation reaction. The resulting samples were applied for CO2 capture at different operational conditions. Two modelling approaches, including artificial neural network (radial basis function [RBF] and multi layer perceptron [MLP]) and response surface methodology (RSM), were employed to investigate the effect of independent parameters on adsorption capacity. A semi‐empirical quadratic model for adsorption capacity was presented based on RSM‐central composite design technique. Additionally, the optimal structure of RBF was determined with 200 neurons, and the optimal structure of MLP was determined with three hidden layers and 10, 8, and 7 neurons. The modelling results demonstrate the better prediction of MLP and RBF approaches than the RSM method with correlation coefficient values of 0.999, 0.989, and 0.931, respectively. Finally, process optimization was carried out using RSM optimization module and the optimized values of synthesis time, crosslinker ratio (formaldehyde dimethyl acetal [FDA]/benzene), adsorption time, pressure, and temperature were obtained at 10.11 h, 1, 220 s, 9 bar, and 55°C, respectively. The optimum value of CO2 uptake capacity was obtained around 167 (mg/g).

Publisher

Wiley

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3