Evaluation of hydrogen production via steam reforming and partial oxidation of dimethyl ether using response surface methodology and artificial neural network

Author:

Mansouri Karim,Bahmanzadegan Fatemeh,Ghaemi Ahad

Abstract

AbstractThis study aims to develop two models for thermodynamic data on hydrogen generation from the combined processes of dimethyl ether steam reforming and partial oxidation, applying artificial neural networks (ANN) and response surface methodology (RSM). Three factors are recognized as important determinants for the hydrogen and carbon monoxide mole fractions. The RSM used the quadratic model to formulate two correlations for the outcomes. The ANN modeling used two algorithms, namely multilayer perceptron (MLP) and radial basis function (RBF). The optimum configuration for the MLP, employing the Levenberg–Marquardt (trainlm) algorithm, consisted of three hidden layers with 15, 10, and 5 neurons, respectively. The ideal RBF configuration contained a total of 80 neurons. The optimum configuration of ANN achieved the best mean squared error (MSE) performance of 3.95e−05 for the hydrogen mole fraction and 4.88e−05 for the carbon monoxide mole fraction after nine epochs. Each of the ANN and RSM models produced accurate predictions of the actual data. The prediction performance of the ANN model was 0.9994, which is higher than the RSM model's 0.9771. The optimal condition was obtained at O/C of 0.4, S/C of 2.5, and temperature of 250 °C to achieve the highest H2 production with the lowest CO emission.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3