Modeling the drivers of eutrophication in Finland with a machine learning approach

Author:

Heikonen Sara1ORCID,Yli‐Heikkilä Maria2,Heino Matias1

Affiliation:

1. Water and Development Research Group Aalto University Espoo Finland

2. Statistical Services Unit Natural Resources Institute Finland Jokioinen Finland

Abstract

AbstractAnthropogenic eutrophication is one of the most common threats to inland water quality, often causing toxic algal blooms and loss of aquatic biodiversity. Mitigating the harmful impacts of eutrophication requires managing nutrient inputs from the catchment focusing on the major local drivers of eutrophication. These drivers can be identified using models that predict lake trophic state based on characteristics of the lake and its catchment. In this study, we aimed to extend the spatial scope of these models by identifying drivers of eutrophication in a large sample of lakes (1547) distributed across Finland. Moreover, we used satellite‐observed chlorophyll a (chl a) concentration as trophic state indicator, instead of site‐sampled data, which is commonly used in existing research. We identified major drivers of eutrophication on river basin district to country scale based on 11 catchment and lake characteristics, applying the random forest algorithm. On country scale, the catchment and lake characteristics explained 41% of the variation in lake chl a concentrations, and on river basin district scale, 20%–44%. Catchment and lake hydromorphology were the most important explanatory characteristics. Especially, high natural eutrophication level, shallow mean depth of lake, and small share of lake area in the catchment were related to increased lake chl a concentration. Moreover, depending on the dominant land use type in the model area, share of agricultural area and share of peatland area in the catchment were ranked among the most important drivers of increased lake chl a concentration. The results suggest that trophic state predictive models utilizing satellite‐observed chl a concentration could provide an additional, cost‐effective tool for addressing lake eutrophication, especially in areas without and extensive on‐site monitoring network.

Funder

Academy of Finland

European Commission

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

1. Agency for Rural Affairs in Finland.2016.“Field Parcels 2016.”http://www.nic.funet.fi/index/geodata/ruokavirasto/peltolohkot/2016/.

2. Applicability of Earth Observation chlorophyll-a data in assessment of water status via MERIS — With implications for the use of OLCI sensors

3. Bartos M. itati01 R.Debbout andD.Huard.2020.“Pysheds: Simple and Fast Watershed Delineation in Python.”https://doi.org/10.5281/zenodo.3822495. Zenodo.https://github.com/mdbartos/pysheds.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3