Split‐Cas9‐based targeted gene editing and nanobody‐mediated proteolysis‐targeting chimeras optogenetically coordinated regulation of Survivin to control the fate of cancer cells

Author:

Deng Changping1ORCID,Li Shihui1,Liu Yuping2,Bao Wen2,Xu Chengnan2,Zheng Wenyun2,Wang Meiyan3ORCID,Ma Xingyuan1ORCID

Affiliation:

1. State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai P. R. China

2. Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai P. R. China

3. Synthetic Biology and Biomedical Engineering Laboratory Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai P. R. China

Abstract

AbstractBackgroundPrecise regulation of partial critical proteins in cancer cells, such as anti‐apoptotic proteins, is one of the crucial strategies for treating cancer and discovering related molecular mechanisms. Still, it is also challenging in actual research and practice. The widely used CRISPR/Cas9‐based gene editing technology and proteolysis‐targeting chimeras (PROTACs) have played an essential role in regulating gene expression and protein function in cells. However, the accuracy and controllability of their targeting remain necessary.MethodsConstruction of UMUC‐3‐EGFP stable transgenic cell lines using the Sleeping Beauty system, Flow cytometry, quantitative real‐time PCR, western blot, fluorescence microplate reader and fluorescence inverted microscope analysis of EGFP intensity. Characterization of Survivin inhibition was done by using Annexin V‐FITC/PI apoptosis, calcein/PI/DAPI cell viability/cytotoxicity assay, cloning formation assay and scratch assay. The cell‐derived xenograft (CDX) model was constructed to assess the in vivo effects of reducing Survivin expression.ResultsHerein, we established a synergistic control platform that coordinated photoactivatable split‐Cas9 targeted gene editing and light‐induced protein degradation, on which the Survivin gene in the nucleus was controllably edited by blue light irradiation (named paCas9‐Survivin) and simultaneously the Survivin protein in the cytoplasm was degraded precisely by a nanobody‐mediated target (named paProtacL‐Survivin). Meanwhile, in vitro experiments demonstrated that reducing Survivin expression could effectively promote apoptosis and decrease the proliferation and migration of bladder cancerous cells. Furthermore, the CDX model was constructed using UMUC‐3 cell lines, results from animal studies indicated that both the paCas9‐Survivin system and paProtacL‐Survivin significantly inhibited tumour growth, with higher inhibition rates when combined.ConclusionsIn short, the coordinated regulatory strategies and combinable technology platforms offer clear advantages in controllability and targeting, as well as an excellent reference value and universal applicability in controlling the fate of cancer cells through multi‐level regulation of key intracellular factors.

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3