Solar‐Light‐Driven Photocatalytic Oxidative Coupling of Phenol Derivatives over Bismuth‐Based Porous Metal Halide Perovskites

Author:

Lee Jinsun1ORCID,Kumar Ashwani1ORCID,Tüysüz Harun1ORCID

Affiliation:

1. Department of Heterogeneous Catalysis Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany

Abstract

AbstractThe selective oxidative coupling of phenol derivatives, involving carbon‐carbon (C−C) and carbon‐oxygen (C−O) bond formation, has emerged as a critical approach in the synthesis of natural products. However, achieving precise control over the selectivity in coupling reactions of unsubstituted phenols utilizing solar light as the driving force remains a big challenge. In this study, we report a series of porous Cs3Bi2X9 (X=Cl, Br, I) photocatalysts with tailored band gaps and compositions engineered for efficient solar‐light‐driven oxidative phenol coupling. Notably, p‐Cs3Bi2Br9 exhibited about 73 % selectivity for C−C coupling, displaying a high formation rate of 47.3 μmol gcat−1 h−1 under solar radiation. Furthermore, this approach enables control of the site‐selectivity for phenol derivatives on Cs3Bi2X9, enhancing C−C coupling. The distinctive porous structure and appropriate band‐edge positions of Cs3Bi2Br9 facilitated efficient charge separation, and surface interaction/activation of phenolic hydroxyl groups, resulting in the kinetically preferred formation of C−C over C−O bond. Mechanistic insights into the reaction pathway, supported by comprehensive control experiments, unveiled the crucial role of interfacial charge transfers and Lewis acid Bi sites in stabilizing phenolic intermediates, thereby directing the regioselectivity of diradical couplings and resulting in the formation of unsymmetrical biphenols.

Funder

Bundesministerium für Bildung und Forschung

H2020 Marie Skłodowska-Curie Actions

Deutsche Forschungsgemeinschaft

Max-Planck-Gesellschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3