Substantial Improvement of an Epimerase for the Synthesis of D‐Allulose by Biosensor‐Based High‐Throughput Microdroplet Screening

Author:

Li Chao1,Gao Xin1,Qi Hongbin1,Zhang Wei1,Li Lei1,Wei Cancan1,Wei Meijing1,Sun Xiaoxuan1,Wang Shusen1,Wang Liyan2,Ji Yingbin2,Mao Shuhong1,Zhu Zhangliang1,Tanokura Masaru3,Lu Fuping1,Qin Hui‐Min1ORCID

Affiliation:

1. Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education Tianjin Key Laboratory of Industrial Microbiology College of Biotechnology Tianjin University of Science and Technology National Engineering Laboratory for Industrial Enzymes Tianjin 300457 China

2. Luoyang BIO-Industry Technology Innovation Center Luoyang 471000 Henan China

3. Department of Applied Biological Chemistry Graduate School of Agricultural and Life Sciences The University of Tokyo Bunkyo Tokyo 113-8657 Japan

Abstract

AbstractBiosynthesis of D‐allulose has been achieved using ketose 3‐epimerases (KEases), but its application is limited by poor catalytic performance. In this study, we redesigned a genetically encoded biosensor based on a D‐allulose‐responsive transcriptional regulator for real‐time monitoring of D‐allulose. An ultrahigh‐throughput droplet‐based microfluidic screening platform was further constructed by coupling with this D‐allulose‐detecting biosensor for the directed evolution of the KEases. Structural analysis ofSinorhizobium frediiD‐allulose 3‐epimerase (SfDAE) revealed that a highly flexible helix/loop region exposes or occludes the catalytic center as an essential lid conformation regulating substrate recognition. We reprogrammed SfDAE using structure‐guided rational design and directed evolution, in which a mutant M3‐2 was identified with 17‐fold enhanced catalytic efficiency. Our research offers a paradigm for the design and optimization of a biosensor‐based microdroplet screening platform.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3