Semi‐rational engineering of D‐allulose 3‐epimerase for simultaneously improving the catalytic activity and thermostability based on D‐allulose biosensor

Author:

Li Zijie1ORCID,Hu Yangfan1,Yu Cheng1,Fei Kangqing1,Shen Liqun1,Liu Yishi1,Nakanishi Hideki1

Affiliation:

1. Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China

Abstract

AbstractBackgroundD‐Allulose is one of the most well‐known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D‐allulose production is the conversion from D‐fructose catalyzed by D‐allulose 3‐epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild‐type DAEase, D‐allulose biosensor was adopted in this study to develop a convenient and efficient method for high‐throughput screening of DAEase variants.ResultsThe catalytic activity and thermostability of DAEase from Caballeronia insecticola were simultaneously improved by semi‐rational molecular modification. Compared with the wild‐type enzyme, DAEaseS37N/F157Y variant exhibited 14.7% improvement in the catalytic activity and the half‐time value (t1/2) at 65°C increased from 1.60 to 27.56 h by 17.23‐fold. To our delight, the conversion rate of D‐allulose was 33.6% from 500‐g L−1 D‐fructose in 1 h by Bacillus subtilis WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle.ConclusionAll these results indicated that the DAEaseS37N/F157Y variant would be a potential candidate for the industrial production of D‐allulose.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3