Exfoliated 2D Layered and Nonlayered Metal Phosphorous Trichalcogenides Nanosheets as Promising Electrocatalysts for CO2 Reduction

Author:

Wang Honglei1ORCID,Jiao Yunfei2ORCID,Wu Bing3,Wang Dong1ORCID,Hu Yueqi1,Liang Fei4,Shen Chen4,Knauer Andrea5,Ren Dan26ORCID,Wang Hongguang7,van Aken Peter A.7,Zhang Hongbin4,Sofer Zdenek3,Grätzel Michael2,Schaaf Peter1

Affiliation:

1. Chair Materials for Electrical Engineering and Electronics Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau Gustav-Kirchhoff-Str. 5 98693 Ilmenau Germany

2. Laboratory of Photonics and Interfaces École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland

3. Department of Inorganic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic

4. Institut für Materialwissenschaft Technische Universität Darmstadt 64289 Darmstadt Germany

5. Institute of Micro- and Nanotechnologies MacroNano® TU Ilmenau Gustav-Kirchhoff- Str.7 98693 Ilmenau Germany

6. School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China

7. Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany

Abstract

AbstractTwo‐dimensional (2D) materials catalysts provide an atomic‐scale view on a fascinating arena for understanding the mechanism of electrocatalytic carbon dioxide reduction (CO2 ECR). Here, we successfully exfoliated both layered and nonlayered ultra‐thin metal phosphorous trichalcogenides (MPCh3) nanosheets via wet grinding exfoliation (WGE), and systematically investigated the mechanism of MPCh3 as catalysts for CO2 ECR. Unlike the layered CoPS3 and NiPS3 nanosheets, the active Sn atoms tend to be exposed on the surfaces of nonlayered SnPS3 nanosheets. Correspondingly, the nonlayered SnPS3 nanosheets exhibit clearly improved catalytic activity, showing formic acid selectivity up to 31.6 % with −7.51 mA cm−2 at −0.65 V vs. RHE. The enhanced catalytic performance can be attributed to the formation of HCOO* via the first proton‐electron pair addition on the SnPS3 surface. These results provide a new avenue to understand the novel CO2 ECR mechanism of Sn‐based and MPCh3‐based catalysts.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3