Multi‐Dimensional High‐Entropy Materials for Energy Conversion Reactions: Current State and Future Trends

Author:

Dong Yilin1,Zhang Lihua1,Wu Tong1,Zhan Yinbo1,Zhou Bowei1,Wei Fei1,Zhang Dongliang1,Long Xia1ORCID

Affiliation:

1. China-UK Low Carbon College Shanghai Jiao Tong University Shanghai 201306 China

Abstract

AbstractThe high‐entropy materials (HEMs), composed of five or more elements, have attracted significant attention in electrocatalysis due to their unique physicochemical properties arising from the existence of multi‐elements compositions. Beyond chemical composition, microstructure significantly influences the catalytic performance and even the catalytic mechanism towards energy conversion reactions. Given the rapid proliferation of research on HEMs and the critical roles of microstructure in their catalytic performance, a timely and comprehensive review of recent advancements is imperative. This review meticulously examines the synthesis methods and physicochemical characteristics of HEMs with distinct one‐dimensional (1D), two‐dimensional (2D), and three‐dimensional (3D) morphologies. By highlighting representative examples from the past five years, we elucidate the unique properties of HEMs with 1D, 2D, and 3D microstructures, detailing their intricate influence on electrocatalytic performance, aiming to spur further advancements in this promising research area.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3