Affiliation:
1. Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
2. Department of Biosystems Science and Engineering, ETH Zurich Mattenstrasse 26 4058 Basel Switzerland
Abstract
AbstractTerpenes represent the largest and the most diverse class of natural compounds. This is remarkable as the whole variety is accessed from just a handful of highly conserved linear precursors. Modification of the cyclization precursors would enable a dramatic expansion of the accessible chemical space. However, natural enzymes do not enable us to tap into this potential, as they do not tolerate larger deviations from the prototypical substrate structure. Herein we report that supramolecular capsule catalysis enables facile access to diverse and novel terpenoid skeletons that formally can be traced back to C3‐phenyl, benzyl, and homoprenyl derivatives of farnesol. Novel skeletons related to the presilphiperfolane core structure, as well as novel neoclovene derivatives were accessed efficiently in only four synthetic steps. Importantly, the products obtained carry functional groups that may be readily derivatized further.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Subject
General Chemistry,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献