Affiliation:
1. Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/ Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
2. Department of Chemistry and Chemical Biology Cornell University Ithaca NY-14853 USA
3. University of Chinese Academy of Sciences Beijing 100049 P. R. China
4. State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
Abstract
AbstractLithium–carbon dioxide (Li–CO2) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li–CO2 batteries, the complex electrode/electrolyte/CO2 triple‐phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy‐differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li–CO2 batteries at the nanoscale, and further revealed a laser‐tuned reaction pathway based on the real‐time observations. During discharge, a bi‐component composite, Li2CO3/C, deposits as micron‐sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2CO3/C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2C2O4, which in turn affects growth/decomposition pathways of Li2CO3/C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li–CO2 batteries and the laser‐tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices.
Funder
National Key Research and Development Program of China
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献