Revealing the CO2 Conversion at Electrode/Electrolyte Interfaces in Li–CO2 Batteries via Nanoscale Visualization Methods

Author:

Shen Zhen‐Zhen1,Lang Shuang‐Yan2,Liu Rui‐Zhi13,Zhou Chi1,Zhang Yao‐Zu13,Liu Bing34,Wen Rui13ORCID

Affiliation:

1. Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/ Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. Department of Chemistry and Chemical Biology Cornell University Ithaca NY-14853 USA

3. University of Chinese Academy of Sciences Beijing 100049 P. R. China

4. State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

Abstract

AbstractLithium–carbon dioxide (Li–CO2) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li–CO2 batteries, the complex electrode/electrolyte/CO2 triple‐phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy‐differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li–CO2 batteries at the nanoscale, and further revealed a laser‐tuned reaction pathway based on the real‐time observations. During discharge, a bi‐component composite, Li2CO3/C, deposits as micron‐sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2CO3/C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2C2O4, which in turn affects growth/decomposition pathways of Li2CO3/C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li–CO2 batteries and the laser‐tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices.

Funder

National Key Research and Development Program of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3