Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries

Author:

Yang Ming1,Wang Yanyi1,Ma Dingtao1,Zhu Jianhui1,Mi Hongwei1,Zhang Zuotai2,Wu Buke3,Zeng Lin3,Chen Minfeng4,Chen Jizhang4,Zhang Peixin1ORCID

Affiliation:

1. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China

2. School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen 518055 China

3. Department of Mechanical and Energy Engineering Southern University of Science and Technology, Ministry of Education Shenzhen 518055 China

4. College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China

Abstract

AbstractSluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was presented, to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−xn H2O host. Theory research indicated that the co‐modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption‐intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all‐climate high‐performance Zn‐ion batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3