Improving Low‐temperature Performance and Stability of Na2Ti6O13 Anodes by the Ti−O Spring Effect through Nb‐doping

Author:

Hu ChangYan1,Li Ying2,Wang Dong3,Wu Chunjin4,Chen Feng1,Zhang Linghong1,Wan Fang1,Hua Weibo5,Sun Yan6,Zhong Benhe1,Wu Zhenguo1ORCID,Guo Xiaodong167ORCID

Affiliation:

1. School of Chemical Engineering Sichuan University 610065 Chengdu P. R. China

2. Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany

3. College of Materials Science and Engineering Chongqing University 400030 Chongqing China

4. State Key Laboratory of Organic Electronics and Information Displays (SKLOEID) Institute of Advanced Materials (IAM) School of Chemistry and Life Sciences Nanjing University of Posts & Telecommunications 9 Wen yuan Road 210023 Nanjing China

5. School of Chemical Engineering and Technology Xi'an Jiaotong University No. 28, West Xianning Road 710049 Xi'an Shaanxi China

6. Institute for Advanced Study Chengdu University Chengdu 610106 PR China

7. Chemistry and Chemical Engineering Guangdong Laboratory 515041 Guangdong China

Abstract

AbstractNa2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium‐ion batteries. In the present study, integrated modification of migration channels broadening, charge density re‐distribution, and oxygen vacancies regulation are realized in case of Nb‐doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g−1. Moreover, unexpected low‐temperature performance with a high discharge capacity of 143 mAh g−1 at 100 mA g−1 under −15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X‐ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti−O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3