Unlocking the Design Paradigm of In‐Plane Heterojunction with Built‐in Bifunctional Anion Vacancy for Unexpectedly Fast Sodium Storage

Author:

Ma Dingtao1,Zhao Zhehao1,Wang Yanyi1,Yang Xiaodan2,Yang Ming1,Chen Yangwu1,Zhu Jianhui1,Mi Hongwei13,Zhang Peixin13ORCID

Affiliation:

1. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China

2. Department of Mechanical Engineering City University of Hong Kong Hong Kong Hong Kong SAR 999077 China

3. Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Center Shenzhen 518060 P. R. China

Abstract

AbstractTransition metal chalcogenide (TMD) electrodes in sodium‐ion batteries exhibit intrinsic shortcomings such as sluggish reaction kinetics, unstable conversion thermodynamics, and substantial volumetric strain effects, which lead to electrochemical failure. This report unlocks a design paradigm of VSe2−x/C in‐plane heterojunction with built‐in anion vacancy, achieved through an in situ functionalization and self‐limited growth approach. Theoretical and experimental investigations reveal the bifunctional role of the Se vacancy in enhancing the ion diffusion kinetics and the structural thermodynamics of NaxVSe2 active phases. Moreover, this in‐plane heterostructure facilitates complete face contact between the two components and tight interfacial conductive contact between the conversion phases, resulting in enhanced reaction reversibility. The VSe2−x/C heterojunction electrode exhibits remarkable sodium‐ion storage performance, retaining specific capacities of 448.7 and 424.9 mAh g−1 after 1000 cycles at current densities of 5 and 10 A g−1, respectively. Moreover, it exhibits a high specific capacity of 353.1 mAh g−1 even under the demanding condition of 100 A g−1, surpassing most previous achievements. The proposed strategy can be extended to other V5S8−x and V2O5−x‐based heterojunctions, marking a conceptual breakthrough in advanced electrode design for constructing high‐performance sodium‐ion batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3