Author:
Chen Chong,Lee Chun-Sing,Tang Yongbing
Abstract
AbstractThere has been increasing demand for high-energy density and long-cycle life rechargeable batteries to satisfy the ever-growing requirements for next-generation energy storage systems. Among all available candidates, dual-ion batteries (DIBs) have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage, excellent safety, and environmental friendliness. However, the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive. To fully employ the advantages of DIBs, the overall optimization of anode materials, cathode materials, and compatible electrolyte systems is urgently needed. Here, we review the development history and the reaction mechanisms involved in DIBs. Afterward, the optimization strategies toward DIB materials and electrolytes are highlighted. In addition, their energy-related applications are also provided. Lastly, the research challenges and possible development directions of DIBs are outlined.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献