Affiliation:
1. Department of Chemistry and Biochemistry The University of Texas at Dallas 800 W. Campbell Road Richardson TX 75080–3021 USA
2. Department of Chemistry Wayne State University 42 W. Warren Ave. Detroit MI 48202 USA
Abstract
AbstractDetection of anions in complex aqueous media is a fundamental challenge with practical utility that can be addressed by supramolecular chemistry. Biomolecular hosts such as proteins can be used and adapted as an alternative to synthetic hosts. Here, we report how the mutagenesis of the β‐bulge residues (D137 and W138) in mNeonGreen, a bright, monomeric fluorescent protein, unlocks and tunes the anion preference at physiological pH for sulfate, resulting in the turn‐off sensor SulfOFF‐1. This unprecedented sensing arises from an enhancement in the kinetics of binding, largely driven by position 138. In line with these data, molecular dynamics (MD) simulations capture how the coordinated entry and gating of sulfate into the β‐barrel is eliminated upon mutagenesis to facilitate binding and fluorescence quenching.
Funder
National Institute of General Medical Sciences
Welch Foundation
University of Texas at Dallas
Wayne State University
Subject
General Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献