Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture

Author:

Premadasa Uvinduni I.1ORCID,Bocharova Vera1ORCID,Miles Audrey R.12ORCID,Stamberga Diana1ORCID,Belony Stella13ORCID,Bryantsev Vyacheslav S.1ORCID,Elgattar Adnan4ORCID,Liao Yi4ORCID,Damron Joshua T.1ORCID,Kidder Michelle K.5ORCID,Doughty Benjamin1ORCID,Custelcean Radu1ORCID,Ma Ying‐Zhong1ORCID

Affiliation:

1. Chemical Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge TN 37831 USA

2. Department of Chemistry and Biochemistry University of Notre Dame Notre Dame IN 46556 USA

3. Department of Chemical Engineering University of Florida Gainesville FL 32611 USA

4. Department of Biomedical and Chemical Engineering Florida Institute of Technology Melbourne FL 32901 USA

5. Manufacturing Science Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge TN 37831 USA

Abstract

AbstractOne of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically‐driven approach for CO2 release by exploiting the unique properties of an indazole metastable‐state photoacid (mPAH). Our measurements on simulated and amino acid‐based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid‐based DAC systems, respectively. Our results confirm the feasibility of on‐demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents.

Funder

Basic Energy Sciences

Workforce Development for Teachers and Scientists

Publisher

Wiley

Subject

General Chemistry,Catalysis

Reference24 articles.

1. Direct air capture: process technology, techno-economic and socio-political challenges

2. A Process for Capturing CO2 from the Atmosphere

3. Direct Air Capture of CO2 Using Solvents

4. Sorbents for the Direct Capture of CO 2 from Ambient Air

5. National Academies of Sciences and Medicine Negative Emissions Technologies and Reliable Sequestration: A Research Agenda The National Academies Press Washington 2019.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3