Affiliation:
1. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA;
Abstract
Large-scale deployment of negative emissions technologies (NETs) that permanently remove CO2 from the atmosphere is now considered essential for limiting the global temperature increase to less than 2°C by the end of this century. One promising NET is direct air capture (DAC), a technology that employs engineered chemical processes to remove atmospheric carbon dioxide, potentially at the scale of billions of metric tons per year. This review highlights one of the two main approaches to DAC based on aqueous solvents. The discussion focuses on different aspects of DAC with solvents, starting with the fundamental chemistry that includes the chemical species and reactions involved and the thermodynamics and kinetics of CO2 binding and release. Chemical engineering aspects are also discussed, including air–liquid contactor design, process development, and technoeconomic assessments to estimate the cost of the DAC technologies. Various solvents employed in DAC are reviewed, from aqueous alkaline solutions (NaOH, KOH) to aqueous amines, amino acids, and peptides, along with different solvent regeneration methods, from the traditional thermal swinging to the more exploratory carbonate crystallization with guanidines or electrochemical methods.
Subject
Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献